311 research outputs found

    Iris and iridociliary melanoma : concepts in diagnosis and management

    Get PDF
    The main aim of this thesis is to evaluate the clinical risk factors and imaging techniques for the diagnosis and to analyze the treatment outcomes of Ruthenium-106 plaque brachytherapy for iris and iridociliary melanomas in terms of tumor regression and its complications, survival and development of metastasis. This thesis also focuses on the differential diagnosis of iris melanomas. Understanding of these subjects can assist ophthalmologists in the diagnosis and evidence-based management of iris melanomas, therefore avoiding unnecessary treatment of an iris naevus.Higher Education Comission of Pakistan. Nelly Reef Fund, Blinden-Penning, Liden Oogheelkundig Ondersteunings Fonds (LOOF).UBL - phd migration 201

    Magnetic relaxation phenomena and cluster glass properties of La{0.7-x}Y{x}Ca{0.3}MnO{3} manganites

    Full text link
    The dynamic magnetic properties of the distorted perovskite system La{0.7-x}Y{x}Ca{0.3}MnO{3} (0 <= x <= 0.15) have been investigated by ac-susceptibility and dc magnetization measurements, with emphasis on relaxation and aging studies. They evidence for x >= 0.10 the appearance of a metallic cluster glass phase, that develops just below the ferromagnetic transition temperature. The clusters grow with decreasing temperature down to a temperature T(f0) at which they freeze due to severe intercluster frustration. The formation of these clusters is explained by the presence of yttrium induced local structural distortions that create localized spin disorder in a magnetic lattice where double-exchange ferromagnetism is dominant.Comment: Accepted for publication in Phys. Rev.

    The development of a light-weight, long-life diphacinone rodent bait

    Get PDF
    Ross, J.G., Eason, C.T., Sam, S., Shapiro, L., Blackie, H., MacMorran, D., Aylett, P., Tucker, N., Razzaq, H

    Effect of fly ash addition on the physical and mechanical properties of AA6063 alloy reinforcement

    Get PDF
    Aluminum-fly ash particulate-reinforced composites (AA6063-FA) have been used in various engineering fields, such as automotive and aerospace industries, due to their low density and good mechanical properties. There are many fabrication techniques available to manufacture these composites according to matrix and reinforcement materials. The compocasting technique for the fabrication of the AA6063 matrix composite reinforced with fly ash particles is the focus of this research. Fly ash content was in the range of 0–12 wt % in increasing increments of 2%. Fly ash particles were added to the molten AA6063 alloy until they were completely blended and cooled down just below the liquidus to keep the slurry in the semi-solid state. After this, the molten AA6063-FA composites were cast into prepared cast iron molds. Bulk density and apparent porosity measurements, Charpy impact testing, Vickers microhardness measurements, Field Emission Scanning Electron Microscope (FESEM), Variable Pressure Scanning Electron Microscope and Energy Dispersive X-ray spectroscope (EDS) elemental mapping were used to evaluate these materials. The results showed that an increase in the fly ash content in the melted leads results in an increase in the microhardness and porosity in the composites. In contrast, the bulk density and Charpy impact energy of the composites decreased with an increase in the fly ash content

    Progressive Structural Defects in Canine Centronuclear Myopathy Indicate a Role for HACD1 in Maintaining Skeletal Muscle Membrane Systems

    Get PDF
    Mutations in HACD1/PTPLA cause recessive congenital myopathies in humans and dogs. Hydroxyacyl-coA dehydratases are required for elongation of very long chain fatty acids, and HACD1 has a role in early myogenesis, but the functions of this striated muscle-specific enzyme in more differentiated skeletal muscle remain unknown. Canine HACD1 deficiency is histopathologically classified as a centronuclear myopathy (CNM). We investigated the hypothesis that muscle from HACD1-deficient dogs has membrane abnormalities in common with CNMs with different genetic causes. We found progressive changes in tubuloreticular and sarcolemmal membranes and mislocalized triads and mitochondria in skeletal muscle from animals deficient in HACD1. Furthermore, comparable membranous abnormalities in cultured HACD1-deficient myotubes provide additional evidence that these defects are a primary consequence of altered HACD1 expression. Our novel findings, including T-tubule dilatation and disorganization, associated with defects in this additional CNM-associated gene provide a definitive pathophysiologic link with these disorders, confirm that dogs deficient in HACD1 are relevant models, and strengthen the evidence for a unifying pathogenesis in CNMs via defective membrane trafficking and excitation-contraction coupling in muscle. These results build on previous work by determining further functional roles of HACD1 in muscle and provide new insight into the pathology and pathogenetic mechanisms of HACD1 CNM. Consequently, alterations in membrane properties associated with HACD1 mutations should be investigated in humans with related phenotypes

    Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy

    Get PDF
    Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies

    Effect of additivized biodiesel blends on diesel engine performance, emission, tribological characteristics, and lubricant tribology

    Get PDF
    © 2020 by the authors. This research work focuses on investigating the lubricity and analyzing the engine characteristics of diesel-biodiesel blends with fuel additives (titanium dioxide (TiO2) and dimethyl carbonate (DMC)) and their effect on the tribological properties of a mineral lubricant. A blend of palm-sesame oil was used to produce biodiesel using ultrasound-assisted transesterification. B30 (30% biodiesel + 70% diesel) fuel was selected as the base fuel. The additives used in the current study to prepare ternary fuel blends were TiO2 and DMC. B30 + TiO2 showed a significant reduction of 6.72% in the coefficient of friction (COF) compared to B30. B10 (Malaysian commercial diesel) exhibited very poor lubricity and COF among all tested fuels. Both ternary fuel blends showed a promising reduction in wear rate. All contaminated lubricant samples showed an increment in COF due to the dilution of combustible fuels. Lub + B10 (lubricant + B10) showed the highest increment of 42.29% in COF among all contaminated lubricant samples. B30 + TiO2 showed the maximum reduction (6.76%) in brake-specific fuel consumption (BSFC). B30 + DMC showed the maximum increment (8.01%) in brake thermal efficiency (BTE). B30 + DMC exhibited a considerable decline of 32.09% and 25.4% in CO and HC emissions, respectively. The B30 + TiO2 fuel blend showed better lubricity and a significant improvement in engine characteristics

    Feedback Authoring for Exploratory Activities: The Case of a Logo-Based 3D Microworld

    Get PDF
    This paper presents AuthELO an authoring environment that can be used for the configuration of logging and authoring of automated feedback for exploratory learning objects (ELOs). ELOs are web components (widgets) that can be integrated with learning platforms to synthesise highly interactive learning environments. AuthELO has been developed in the context of the MCSquared project that is developing a platform for authoring interactive educational e-books. This platform comprises an extendable set of diverse widgets that can be used to generate instances of exploratory activities that can be employed in various learning scenarios. AuthELO was designed and developed to provide a simple, common and efficient authoring interface that can normalise the diversity of these widgets and give the ability to non-experts to easily develop or customise the feedback that is provided to students using a data-driven approach. In this paper we describe the architecture and design characteristics of AuthELO and a small-scale evaluation with activities in a logo-based 3D microworld called Malt+. We reflect on both the challenges of the authoring process and the pedagogical potential of the feedback when these activities are used by students

    Effect of palm-sesame biodiesel fuels with alcoholic and nanoparticle additives on tribological characteristics of lubricating oil by four ball tribo-tester

    Full text link
    Dilution of engine oil with unburned fuels alters its lubricity and tribological properties. In this research paper, SAE-40 lubricating oil samples were contaminated with known percentages (5%) of fuels (diesel, palm-sesame biodiesel blend (B30), B30 + ethanol, B30 + dimethyl carbonate, B30 + carbon nanotubes and, B30 + titanium oxide). The effect of all these fuels on wear and frictional characteristics of lubricating oil was determined by using a 4-ball tribo tester and wear types on worn surfaces were analyzed by using SEM. Lubricating oil diluted with B10 (commercial diesel) showed highest COF (42.95%) with severe abrasive and adhesive wear than mineral lubricant among other fuels. Lubricating oil diluted with palm-sesame biodiesel (B30 blend) with alcoholic additives showed comparatively less COF, less wear scar diameter and polishing wear due to presence of ester molecules. Lub + B30 + Eth exhibited increment in COF value (35.81%) compared to SAE-40 mineral lubricant. While lubricating oil contaminated with B30 with nanoparticles showed least frictional characteristics with abrasive wear. Lub + B30 + TiO2 showed least increment in COF value (13.78%) among all other contaminated fuels compared to SAE-40 mineral lubricant. It is concluded that nanoparticles in biodiesel blends (B30) helps in reducing degradation of lubricants than alcoholic fuel additives and commercial diesel

    Opening Up an Intelligent Tutoring System Development Environment for Extensible Student Modeling

    Get PDF
    ITS authoring tools make creating intelligent tutoring systems more cost effective, but few authoring tools make it easy to flexibly incorporate an open-ended range of student modeling methods and learning analytics tools. To support a cumulative science of student modeling and enhance the impact of real-world tutoring systems, it is critical to extend ITS authoring tools so they easily accommodate novel student modeling methods. We report on extensions to the CTAT/Tutorshop architecture to support a plug-in approach to extensible student modeling, which gives an author full control over the content of the student model. The extensions enhance the range of adaptive tutoring behaviors that can be authored and support building external, student- or teacher-facing real-time analytics tools. The contributions of this work are: (1) an open architecture to support the plugging in, sharing, re-mixing, and use of advanced student modeling techniques, ITSs, and dashboards; and (2) case studies illustrating diverse ways authors have used the architecture
    • …
    corecore